Integrating digital technologies – computational thinking, designing digital outcomes, and Dichotomous keys

As my inquiry this year, I have been trying to explore ways to incorporate aspects on the digital technologies curriculum strand into ‘my’ classes in a meaningful way. I have had a play with my Level 2 chemistry class by focussing on pattern recognition and algorithms we were exploring solubility rules, and then also with some mystery skypes to work on students questioning ability. I have also had a play with some stop motion videos for polymers with my chem classes (trying to be brave and branch out into the designing digital outcomes strand rather than just the computational thinking strand of the digital technologies curriculum!! I am definitely less confident with this strand… and I am still working to find ways to incorporate programming specifically into my Science classes, my own knowledge of programming is still holding me back a little). My yr 8’s have had patchy lessons here and there as I tested out little activities trying to get my head round things. As I have grown more comfortable with the ideas, and the levels to pitch to different students, I am planning to incorporate a more learner centered approach with my yr 8 Science class for our plants topic. Specifically around incorporating computational thinking to pattern recognition, algorithms and plant identification, and then designing a digital outcome for the students final plant identification tool.

Almost every person who has ever done any science at school will remember seeing a dichotomous key – a flow chart with this or that answers that you works your way through to identify a species of plant or animal

Screen Shot 2018-09-27 at 9.17.37 AM.png
A dichotomous key for identifying sharks – thanks wikipedia 🙂   https://en.wikipedia.org/wiki/Shark

The key is dichotomous because it there are two choices, does the shark have this or that. So it is like a binary system, with only 2 options. Which is essentially how all computers work, because the only have the two possible options. To be able to draw a key like this, you need to have identified the patterns and traits that are unique to each species, and then order them in such a way so that each species can be identified.

In the past, I have focussed on ‘teaching’ my students how to interpret these keys rather than getting them to build their own. There is often a key in an end of topic test, and (being a bit brutal on myself) it was an easy way to get some students over the line.

This year, I’m allotting a bit more time and the plan is.

  1. spend some time learning how to identify plants.

Using the plants around us, the plants that we see at the Sinclair wetlands (we go on a great field trip there, spending the day ripping out gorse and planting trees and shrubs and watching all the bird life in the occasional moments the students are quiet enough to not scare them all away) and some online resources, I’m ‘hoping’ that students will learn more about the different features of the plants, and why these adaptations are important. An easy example would be deciduous compared to ever green trees – NZ natives do not lose their leaves in the winter compared to many introduced trees. Why might this be? Or why do our local sand dunes have different plants to the river bed a few metres up.

There will be a bit more direct instruction in this section. I watched with interest the debate over learner centric and teacher driven teaching and learning, and I think, like all things, you need to find a happy medium between the two. So we will go over what some adaptations are, ideas to look for, how environment impacts growth etc.

2. Look specifically for different patterns occurring with the various traits of the plants.

So, as we look at the adaptations, what do all the plants that have ‘spiky’ leaves have in common? Are they related or not? How can we tell the difference between the two different types of leaves and the plants they represent? How can we begin to group plants together based on similar patterns, traits etc.

If we get time, we might get into some abstraction. What adaptations would a plant living in this environment have? If the climate continues to change, what adaptations do you think the plants in different places might need to make. Could the plants do this fast enough?

3. How could we help some-one else identify the different plants? Making a dichotomous key.

So, designing a flow chart seems simple enough right. I’m hoping not. I’m thinking there will need to be some good leading questions, and some iteration involved to get the best possible outcomes. What yes no questions could we ask to identify 10 different plants that are common about the school? How could this be done in the least number of steps? How can we cut down on repeating questions? What is the best way to ask the questions clearly.

4. How do we present our keys?

I’m sure some of the students will want to do this in minecraft (they are minecraft crazy!!).  I might be brave and try doing a java based program with those that are keen. And those that are less confident I am thinking we might do some options with a powerpoint – using the hyperlink function to jump between slides to mimic bringing up the next question in the key. Or I am sure the students will have some other ideas about how they can present their work.

Screen Shot 2018-09-27 at 9.56.40 AM.png
The over view for digital outcomes for the NZ digital technology curriculum  http://elearning.tki.org.nz/Teaching/Curriculum-areas/Digital-Technologies-in-the-curriculum#js-tabcontainer-1-tab-4

 

So this ‘unit’ of work will hopefully tie in some of the learning I have done around the digitech curriculum, and allow me to more specifically focus on the designing digital outcomes strand. My holiday project is to modify the classes onenote so all the plant adaptation content is there, as well as spending some time on the digital design outcome strand to sure up my knowledge of this area.

And I will report back on how it goes in Term 4.

Have fun

 

 

 

One thought on “Integrating digital technologies – computational thinking, designing digital outcomes, and Dichotomous keys

  1. Hi Rachel
    I am one of the Manaiakalani Outreach Facilitators. I enjoyed reading your post, it got me thinking of some ideas high school teachers could try to integrate the digital curriculum into their Science classes. Looking forward to hearing how it went with your students last term and where to for 2019 🙂

    Regards
    Kerry

Leave a Reply to Kerry Boyde-Preece Cancel reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: